Tedburn St Mary Primary School:

Number \& Calculation policy: Years 3 \& 4

Rationale
It is our intent, based on school research and our study as part of the Jurassic Maths Hub, to provide children with clear methods and strategies in order to build secure foundations in calculation. In Years $3 \& 4$ children develop the basis of written methods by building their skills alongside a deep understanding of place value. They should use known addition/subtraction and multiplication/division facts to calculate efficiently and accurately, rather than relying on counting. Children use place value equipment to support their understanding.

Staff will begin units of work with an elicitation task. These tasks will include questions; fluency, reasoning and problem solving being at the heart of these tasks. These tasks will provide staff with a clear picture of children's knowledge and skills and then allow staff to meet need and extend children's learning from their individual starting points. They will be used again at the end of a unit of work, enabling staff to see a clear picture of progress and mastery of given areas.

Key Vocabulary:

rounding, partition, place value, tens, hundreds, thousands, column method, whole, part, equal groups, sharing, grouping, bar model

	$214+4=?$ Now there are $4+4$ ones in total. $4+4=8$ $214+4=218$	$\begin{aligned} & 245+4 \\ & 5+4=9 \\ & 245+4=249 \end{aligned}$	Use number bonds to add the 1 s and understand that this is more efficient and less prone to error. $245+4=?$ I will add the 1 s . $5+4=9$ So, $245+4=249$
3 / 4-digit number + 1s with exchange	Understand that when the 1 s sum to 10 or more, this requires an exchange of 10 ones for 1 ten. Children should explore this using unitised objects or physical apparatus.	Exchange 10 ones for 1 ten where needed. Use a place value grid to support the understanding.	Understand how to bridge by partitioning to the 1 s to make the next 10 . $135+7=?$ $135+5+2=142$ Ensure that children understand how to add 1 s bridging a 100. $\begin{aligned} & 198+5=? \\ & 198+2+3=203 \end{aligned}$
3-digit number +10s, no exchange	Calculate mentally by forming the number bond for the 10 s . Add 9 to 3041. $3041+9=$ \square make 10 $\begin{aligned} & 3041+9=3040+10 \\ & 3041+9=3050 \end{aligned}$	Calculate mentally by forming the number bond for the 10 s . $\begin{gathered} 98+4142= \\ 98+4142=100+4140 \\ =4240 \end{gathered}$	Calculate mentally by forming the number bond for the 10 s . $753+40$ I know that $5+4=9$ $\begin{aligned} \text { So, } 50+40 & =90 \\ 753+40 & =793 \end{aligned}$
3-digit number + 2-digit / 3 digit number,	Use place value equipment / grids to mo required.	el addition and understand where exchange is	Use a column method with exchange. Children must understand how the method relates to place value at each stage of the

exchange required	100 100 10 10 10 10 10 1 1 100 100 10 10 1 100 10	ones. Ther	4 tens so I will exchange.	calculation.
Representing additions and checking strategies		Bar model in problem methods I chose to then subtr	be used to represent additions ts, and to justify mental opropriate. ut $574+800$,	Use rounding and estimating on a number line to check the reasonableness of an addition. $912+6,149=?$ I used rounding to work out that the answer should be approximately $1,000+6,000=7,000$
Subtraction	All children will be taught column subtraction. Place value equipment will be used to represent subtractions and support mathematics where necessary. Other methods may also offer support to secure knowledge and skills. All children will be taught to subtract without exchange and then subtract with exchange			
	Concrete	Pictorial		Abstract
3-digit number -1s, no exchange	Use number bonds to subtract the 1 s .	Use number bonds to subtract the 1s.		Understand the link with counting back using a number line. 132-4

	$214-3=?$ 10 LOLLIES $\Delta 甘 木 火$ $\begin{aligned} & 4-3=1 \\ & 214-3=211 \end{aligned}$	$9-4=$	T 首 I ＝？ T		$319-4=315$	
3－digit number －up to 3 ／4－ digit number	Use place value equipment to explore the effect of splitting a whole into two parts，and understand the link with taking away．	Repres			tion on a place value grid．	Use column subtraction to calculate accurately and efficiently．
3－digit number －up to 3－digit number， exchange required	Use equipment to exchange 1 hundred for 10 tens，and 1 ten for 10 ones．	Model grid． 175－ I need ten for			xchange on a place value nes，so I will exchange a	Use column subtraction to work accurately and efficiently． $\begin{array}{r} \mathrm{H} \text { T O } \\ \hline 1675 \\ -\quad 38 \\ \hline 137 \\ \hline 175-38=137 \end{array}$

Representing subtraction problems		Use bar models to represent subtractions. 'Find the difference' is represented as two bars for comparison. Bar models can also be used to show that a part must be taken away from the whole.	Children use alternative representations to check calculations and choose efficient methods. Children use inverse operations to check additions and subtractions. $\begin{array}{rrr} H & T & O \\ \hline 2 & 7 & 0 \\ +2 & 5 & 5 \\ \hline 5 & 2 & 5 \\ \hline \end{array}$ I will check using addition.
Multiplication	All children will be taught times tables to 12x12 and begin with formal written methods for short multiplication		
	Concrete	Pictorial	Abstract
Understanding equal grouping and repeated addition Using commutativity to support understanding	Children continue to build understanding of equal groups and the relationship with repeated addition. Children recognise that arrays can be	Children recognise that arrays demonstrate commutativity.	Children understand the link between repeated addition and multiplication. 8 groups of 3 is 24 . $\begin{aligned} & 3+3+3+3+3+3+3+3=24 \\ & 8 \times 3=24 \end{aligned}$

column method	$\begin{aligned} & 3 \times 20=60 \\ & 3 \times 4=12 \end{aligned}$ $\begin{aligned} & 3 \times 24=60+12 \\ & 3 \times 24=70+2 \\ & 3 \times 24=72 \end{aligned}$	$\begin{aligned} & 4 \times 20=80 \\ & 4 \times 3=12 \\ & 4 \times 23=92 \end{aligned}$				
Column multiplication for 2- and 3-digit numbers multiplied by a single digit	Use place value equipment to make multiplications. 26×3 There are 3×6 ones... 18 ones There are 3×2 tens ... 6 tens $18+60=78$	Use place value method for mu 3 -digit number	ment alongside on of up to ingle digit. Ones 1)(1) 1	T 3 6	$m n$	Use the formal column method for up to 3-digit numbers multiplied by a single digit. $\begin{array}{r} 312 \\ \times \quad 3 \\ \hline 936 \\ \hline \end{array}$
Division	All children will be taught short division method (bus stop)					
	Concrete	Concrete				Concrete
Understanding the relationship between multiplication and division, including times-tables	Use objects to explore families of multiplication and division facts.	Represent divisions using an array.$24 \div 4=6$				Understand families of related multiplication and division facts. I know that $5 \times 7=35$ so I know all these facts: $5 \times 7=35$

